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Abstract

The mathematical model of a fractal interpolation surface on a rectangular field is proposed in this paper. The theory
of a fractal interpolation surface is applied to the generation of rock fracture surfaces. The methods of the improved
self-affine fractal interpolation surface are proposed. Based on the statistical fractal character of fracture surfaces, the
new ideas and methods of the partition of the local field and the determination of a vertical scaling factor are given by
using the principles of geostatistics and trend surface analyses, so that the local stochastic irregular roughness on the
fracture surface can be simulated. Fractal interpolated surfaces based on 5.5-25.62% of information data on 12
measured rock fracture surfaces are in good agreement with the measured rock fracture surfaces, and the relationship of
the information point number used in the interpolation and the interpolation precision is obtained. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The earth’s crust is basically discontinuous. The faults and joints in rocks affect the deformation,
strength, and conductivity of rock masses significantly. Slope slides and roof caving occur too frequently in
civil engineering and mining projects. The occurrences of accidents are closely related to the influence of
faults and joints in rocks. Extensive investigations have shown that surface roughness of rock fracture plays
an important role in the influence of the mechanical behavior of faults and rock joints (Barton, 1973;
Byerlee, 1978; Bandis, 1990; Aydan and Kawamoto, 1990; Maerz and Franklin, 1990; Huang et al., 1992;
Xie, 1993; Xie and Pariseau, 1994; Xie et al., 1998).

Fractal geometry established on the pioneering work of Mandelbrot (1982a,b) has attracted a great
amount of interest and attention from scientists in recent years. Fractal theory quantitatively describes an
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irregular (fractal) object. The feature of fractal geometry can be expressed mathematically with self-simi-
larity and self-affinity, suggesting that the structural phenomena exist at any scale. Some pioneer investi-
gations have used fractal geometry as an alternate tool to characterize the rough surfaces of rock joints
(Turk et al., 1987; Xie, 1989; Maerz and Franklin, 1990; Lee et al., 1990; Huang et al., 1992; Muralha, 1992;
Odling, 1994; Xie, 1993; Xie and Sanderson, 1994, 1995; Xie et al., 1997). From these works, it has been
discovered that the rough surfaces of rock joints have some fractal features and the fractal dimension is one
of the surface morphology parameters of the discontinuities.

So far, many of the studies have been limited in descriptions of the rough surfaces of rock fractures. The
most important aspect in rock engineering practice, however, is that fractal analysis may be applied to
predict the mechanical properties and behavior of rock engineering situations, especially when faults and
joints are in different strata where it is impossible to obtain the detailed data on the roughness of the fault
surfaces directly. It is urgent and invaluable to setup mathematical models of fractals (Xie and Sun, 1997)
so that the real fault morphology can be interpolated approximately based on limited amount of measured
data of surface roughness. The work described herein includes two parts: (1) the method of an improved
self-affine fractal interpolation surface is put forward based on the fractal interpolation surfaces described
in the literature (Manderbrot, 1982a,b; Barnsley and Pemko, 1986; Feder, 1988; Massopust, 1994), (2) a
comparison of mathematically generated morphology of rock fracture surfaces with measured parameters.
The study emphasizes the precision of fractal interpolation of rock fracture surfaces. In order to simulate
local stochastic irregular roughness of the natural fracture surfaces, the new ideas and methods of the
partition of the local field and determination of a vertical scaling factor are given by using the principles of
geostatistics and trend surface analysis. To confirm results of the fractal interpolation method, the
roughness data of the fracture surfaces of 12 rock samples measured by using a laser scanner in the lab-
oratory are used to carry out the fractal interpolation of fracture surfaces. With the method discussed in
this paper, the descriptions of the surfaces with higher interpolation precision are obtained.

2. The establishment of fractal interpolation surfaces on a rectangle field

Let I =a,b], J =[c,d]; and D=1 xJ = {(x,y):a<x<b,c<y<d}. We divide D into grids with the
steps Ax and Ay such that (Qi, 1994)
a=xg<x;<---<xy=5>b (1)
c=p<n<--<yw=d
With a data set {(x;,y;,z;;), i=0,1,...,N, j=0,1,...,M} on the grids, we construct an interpolation
function f:D — R, such that f(x;,y;) =z, i=0,1,...,N, j=0,1,..., M.
We will restrict our attention to the field K = D X [k, hy](—o0 < by < hy < 400 =. For (cy,dy,e),
(Cz,dz,ez) S K, let d((C],d],é]), (Cz,dg,@z)) = max{|c1 — Cz|7 |d1 — d2|, |€1 — €2|}.

2.1. Iteration function system
Let 7, = [xo—1,%0)s Jn = ety Vm)s Do = L X Ty n € {1,2, ... ,N}, me {1,2,... . M}. And let ®,:1 — I,,

¥, :J — J, be contraction mapping, so that:

QDn (XO) = Xn—1, dsn (xN) = Xy

qlm(yo) = V-1, qlm(yM) =Vm (2)
|®y(c1) = Du(ca)| <kiler — e
|¥n(di) — ¥iu(do)| < koldr — db|

where ¢i, e, €1, dy,dr €J,0<k <1,0<hk < 1.
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Let L,,,: D — R? be a contraction transformation: L,,,(x,y) = (®,(x), ¥,.(»)). Let F,,,: K — [hy, h,] be
continuous, which must obey four equations:
m(xo7J’0720.0) = Zn—1,m-1
nm(xN7y07ZN,0) = Zpm—1 (3)
n m (x07yMa ZO,M) = Zn—l,m
(

F;:m XN 7yM7ZN,M) = Znm
For any (¢,d) € D and z,, z; € [hy, h,], we have
|Fom(c,d,z1) — Fyu(c,d,z)| <kslzy —z2| ne{l,2,...,N}, me{l,2,... .M}, 0<k; <]l (4)
Let @,(x) = a,x + b,. With the condition (2), we have

apxo + bn = Xn—-1, apXy + bn = Xn,

and obtain

{an = (%0 —xu-1)/(xn — x0)

by, = (Xy—1xy — x,X0)/ (X5 — Xo)
L) = a2  x) me{1,2,...,N} (6)
Xy — Xo
Let ¥,(y) = ¢,y + d,,. Similarly, with the condition (2), we have

{cm = W = Ym1)/ O — 0)
dn = Vm-13m = Ymd0)/ s — W0)

— Ve
Ym — Mo
Let
Fon(x,2,2) = €nmX + fumy + umXV + Sumz +knw ne€{1,2,....,N}, me{1,2,... .M} 9)

According to Eq. (3), we have

Zn—1,m—1 = €nmX0 +f;l,lny0 + &n.mX0)0 + Sn,mZ0,0 + kn,m
Znn—1 = €pmXN +f;1,my0 + &n.mXN)Y0 + Sn,mZN .0 + kn,m
Zn—1,m = €n,mX0 +fnmyM + En.mX0Ym + Sn,mZ0.M + kn,m

m = €nmXN +ﬁ1,myM + EnmXNYM + Sn.mZN .M + kn,m

(10)

Let s, (n€{1,2,....,N},me {1,2,...,M}) be any real number and satisfy |s,,| < | that is called a
vertical scaling factor. We find that we can always solve the above equations for e, ., f,m> gum and k,,, in
terms of the interpolation data and s,,. We obtain

 Zuctm—1—Zn— A~ Znm—1+Znm—Snm (20,0 —ZN,0—Z0.M +ZN M)

Enm = X0Y0 —XN Yo —X0YM-FXNIM

e, — Inlml Il ~Snm (20,0 —2n.0) —&nm (X0J0 —XNJ0)
mm Xo—xy

Fom = Zn—1m=1=Zn—1.m—Sn,m (20,0 =20.01) —&nm (X0Y0 —X0Yn ) (1 1)
n,m No—IYm

kn,m == Zn«,m - en,me _f;i,myM - SnA,mZN,M - gmnszyM

ne{l,2,....,N}, me{l,2,...,M}
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We define a new mapping G, ,(x,,z):

Ez.m(x7yaz) +An1m(y’z)$—'x;‘h X € [xN—lva], nec {1,2, ,N— 1}, m e {1,2,.‘.,M}7
F;H-l.,m(xvyaz) - An,m(y7z);]1:;]7 X e [X(),xd, ne {172,...,N7 1}, m e {1,27 ,M},
Gun(6,2,2) = & Fum(6,2,2) + Opn(v,2) 222 ye [y 1w, m€ 1,2, N}, me{1,2,..,M — 1},
E1,nz+l(x7yaz) - @nAm(x7Z);?:;o, ye [)/(),y]]7 nec {1,2, e 7]\]}, m e {1,27 A ,M — 1}7
EY,m(xayaZ)a others,
(12)
where
Aum(,2) = (Fuprm(x0,3,2) = Fam(xy, 3,2)) /2 (13)
@"«,m(‘x7z) = (F;I.M+1(x’y0az) - Eun(xavaz)>/2 (14)

Eq. (12) can be described as follows (for the sake of simplification we only explain F,,, and F,;, on X
direction). See Fig. 1. Generally, the interpolation results of F;,, and F;,;, on common borderline are
different if the boundary of the field is noncoplanar. In other words, the interpolation values are not unique.
We construct the new mapping G,,, to remedy this shortcoming (see Fig. 2).

According to the Eq. (12), we can define an iterate function system (IFS) (Barnsley and Pemko, 1986;
Barnsley, 1988) W, ,,(x,,z) on the field K:

Wym(X,2,2) = (Pp(x), (), Gum(x,3,2)) ne{l,2,....,N}, me{l,2,... ,M}. (15)

For such defined IFS, we have a unique attractor G = {(x,y, f(x,»)): (x,y) € D} that is the graph of a
continuous function f, such that

f(xl-,y/-):Z,-J; l.:O,l,...’N, j:0,17...7M (16)

O

O
\ 9

O
\ 9

A T

Fom|

F n+l.m

0]
Xo X1 X2 X3 X4

Fig. 1. The interpolation with noncoplanar boundary data: (e) — interpolation point on the left boundary, (O) — interpolation point on
the right boundary, () — the area on the common boundary calculated by F, , and F,,;,.,® — the point with the unique result in-
terpolated by F, ,, and F, | ,, (Oe) — the point with the nonunique result interpolated by F, ,, and F, .| .
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Xi-1 Xi Xixl

Fig. 2. The interpolated result of G, , and F, .

2.2. Interpolation function

Based on the IFS equation (15), the function of the self-affine fractal interpolation surface must satisfy:
f(an’) = en,mds;;l(x) Jrfn,mlpr;l(y) +gnm¢;l(x) tp;ll(y) +‘5"1<,r'1f((15;1(x)a T;(J’)) + knm (17)

where e, ., fum, &.m and k,,, are obtained from Eq. (11) and

@;l(x) = (x—x,,,l)xxNJ—i—xo, X E [Xpo1,x4], n€{l,2,...,N}, (18)

n n—1

Yu — o
)

m m—1

lP;zl(y):(y_ymfl +y, Y€ b/mflaym]a m€{1,2,..‘,M}. (19)

2.3. Dimension of fractal interpolation surface

Let N =M in Eq. (17) and a, = ¢,, = 1/N in Egs. (5) and (7). So that

{qﬁn}varb,,, ne{l,2,...,N}

Y, =+y+d, me{l,2,...,N} (20)

The number of the fields for the interpolation is N> (= N x N). Let f* denote the fractal interpolation
function, the domain of /™ is [a, b] x [c,d]. Then the graph of the function f™* (graph /™) is a fractal surface
in three-dimension Euclidean space R® on which the data (x;,y;,z;), i,j =0,1,2,...,N lie. According to
Massopust’s research on fractal surface dimension (Massopust, 1994), we have the dimension theorem of a
fractal interpolation function as follows:

Theorem. Suppose Z;V:l ZZ:] |$ym| > N and the interpolation points are noncoplanar, then the box dimension
of fractal interpolation surface is given by

N N
dim (graph f*) = 1+ logy» > |, (21)

n=1 m=1

3. The case of a self-affine fractal interpolation surface

We get 10 x 10 data points measured on a rock fracture surface (Wang, 1994) (Table 1). With the self-
affine fractal interpolation surface function, we will use these data to simulate the real rock fracture surface.
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Table 1

The value of experimental variagram
h (cm) Data pair v (h)
0.22 90 0.13
0.44 40 0.22
0.66 30 0.30
0.88 20 0.56
1.10 10 0.55

Fig. 3 shows the space distribution of these data and Fig. 4 gives an example of the fractal interpolated
result (vertical scaling s,,, = 0.11 and Ax = Ay = 0.22 cm).

Fig. 5 shows the rock fracture surface measured by a laser scanner. In Fig. 4, it can be easily found that
the interpolated surface has higher symmetry and regularity because the strict self-affine fractal interpo-
lation is used. This interpolated result indicates the fractal characteristics of strict self-affinity on mathe-

Y,mmo0 X mm

Fig. 3. The space distribution of 10 x 10 data measured from a rock fracture surface.
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Fig. 4. The self-affine fractal interpolation surface (the vertical scaling s,, = 0.11).
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Fig. 5. Rock fracture surface measured by laser scanner (Wang, 1994).

matical theory. Unfortunately, natural rock fracture surface has fractal feature, but not strict self-affinity.
Comparing Figs. 4 and 5, we can see that the morphology of this kind of interpolated surface is not
consistent with the actual measured surface. So we put forward an improved self-affine fractal interpolation
and setup the methods of the partition of local field and the determination of vertical scaling in this paper.
With this method, we can obtain higher precision for the description of a fractal interpolation surface of a
rock fracture surface.

4. Improved self-affine fractal interpolation

There is no strict self-affine fracture surface in nature. What we wish to do is to model the fracture
surfaces by the self-affine fractal interpolation surfaces. How to interpolate a fracture surface with high
precision and to satisfy the practical demand of engineering problems under restraints of a limited amount
data is an application of wide general interest. In this section, a method of improved self-affine fractal
interpolation is proposed. The goal of this improved self-affine fractal interpolation is to enhance inter-
polation precision based on the methods of the partition of the local field and determination of the vertical
scaling.

4.1. Partition of the local field

According to the characteristics of local pertinence of rock fracture surfaces and the variagram theory in
geostatistics (Sun, 1990), we put forward the method of local field partition to obtain higher interpolating
precision. Let us first briefly introduce the principles of the variagram.

The variagram is a powerful research tool both pertinence and randomness. The model of a theoretical
variagram reflects both the pertinence and the randomness of regional variables. The theoretical equation
of the spherical variagram model is (see Fig. 6):

Co, hZO,
W) =4 c+e(34-1(4)"), 0<h<a, (22)
¢y +c, h>aa

where a is range, ¢y nugget effect and ¢y + ¢ sill.
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y(h)

A

CotcC

Co S

v

0 a

Fig. 6. Spherical variagram model.

Fig. 6 gives a spherical variagram model. The abscissa (/) stands for the distance between two points and
the ordinate (y(k)) the value of variagram (the magnitude of variability). From Fig. 6, we can see that the
variability increases along a cubic curve when the distance, less than «, increases. When the distance be-
tween two points is greater than «, the variability stays on the value ¢y + ccy + ¢ is called the sill. It reflects
the extent of data variation. The term ¢, denotes the nugget that expresses the discontinuity of data at the
origin. It means that the variation produces the jump ¢, when the distance between two points is very small.
The physical meaning of the range a can be explained as follows.

The variability of the two points is related to the distance between them if the distance is less than a (the
larger the distance, the larger the variability). The variation of the curve on the interval [0, a] reflects the
pertinence of the data. When the distance of the two points is greater than a, the variability of the two
points is independent of the distance between them. The variation of the curve on the interval (a, co) reflects
the randomicity of the data. So we call a the range that is the extension of data variance. We can use the
range a as the reference of the partition of the local field.

To obtain the theoretical variagram, we should make an experimental variagram first. The formula of
the experimental variagram is

7 (h) = 2—2[2()6:- +h) = =z(x)]’ (23)

where y*(h) is the experimental variagram, z(x) is the altitude at x on the fracture surface, / is called lag that
is the distance between two points and N (%) is the total number of the data pairs.

We take data in Table 1 as a studying case. The experimental variagram is calculated with the lag (%)
0.22, 0.44, 0.66, 0.88 and 1.10 cm and listed in Table 2.

On the coordinate system 4 — y(h) the points are drawn in Fig. 7. Based on these points we use the least
square method to fit a theoretical variagram curve Eq. (22) (see Fig. 7). Then we can obtain all the pa-
rameters of the theoretical variagram. The range a (one of the parameters of the theoretical variagram) is
approximately equal to 0.7 cm. Thus based on the previous consideration we take 0.7 cm as the side of the
local field.

According the value of range a, the interval of the interpolating points is determined to be 0.22 cm, so we
use 4 x 4 interpolating points (3 x 3 intervals) as a local field (see Fig. 8). We will perform the interpolation
on the local field, not the whole area.
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Y(h)

A

0.60-
0.50 - . .
0.40 -
0.30 -
0.20 - ]
0.10 - .

0

v

0.7 cm

Fig. 7. The curve of fitting experimental variagram: () — data point of experimental variagram, (—) — curve of theoretical variagram,
a=0.7,¢o=0, cg+c=0.35.

|The first local field | |The second local|

Fig. 8. The determination of local field.

4.2. The selection of the vertical scaling

From the fractal interpolation surface equation (17), we know that the parameters g, ., €m, fum and k,
can be found by using Eq. (11) and only s,,, vertical scaling, is a free parameter that influences the
morphology of interpolated surfaces. Under the same interpolation conditions (interpolation model and
interpolating data), different vertical scaling produces different interpolated surfaces.

In the present literature of fractal interpolation, the vertical scaling is given artificially. So the inter-
polated results can only satisfy the demand of theoretical research; they cannot meet the demand of
practical engineering.
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We discuss now the method of determining the vertical scaling that relates to the given interpolating
data. So that we can obtain a high-precision interpolated fracture surface.

It is well known that the inhomogeneity of a material dominates the roughness of fracture surfaces. The
interpolating data are taken from the fracture surface, so they express the degree of roughness of the
fracture surface. On the other hand, the vertical scaling in the interpolation influences the roughness of
the interpolated surface directly. Therefore, the selection of the vertical scaling should be based on the
interpolated data. The methods and the process of determining the vertical scaling are as follows:

1. Based on the given data (interpolated data) (x;,3;,z;) (i =1,2,...,n), use the least square method to fit
one order trend surface equation: z = by + byx + byy.

2. Using the one order trend surface equation, calculate the trend value at each given data point:
2,‘ = bo—l—b]x,»—&—bzy,» (l: 1,2,...,1’[).

3. Obtain the deviation value by subtracting the trend value from the corresponding given data:
e,=z;—2 (i=1,2,...,n).

4. Use the deviation value as the reference for the vertical scaling.

The one order trend surface expresses the average variational plane. The magnitude of the deviation
value reflects the extent of departure for the given data from the average plane.

From the variagram principles, the data are pertinent within the area of the range «. In the small
neighborhood of a given point, the variational feature at the point reflects that in the small neighborhood.
So, using the deviation value at the point to estimate the vertical scaling in the neighborhood including the
point is an unbiased estimation.

The equation of one order trend surface (Wang, 1982) can be expressed as

zZ = bo + blx + bzy (24)

where by, by, and b, are the parameters of the one order trend surface that can be obtained by the least
square method.

Let (x;,y;,z:) (i =1,...,n) be n given data where (x;, ;) are the coordinates of the ith given point and z; is
the value of the ith given point. According to the least square method, we use these data to fit a plane so
that the square sum of the deviation of the data to the plane is the minimized.

Let

n

0= Z(Zi —z) = Z(zi — by — bix; — b))’ (25)
i1

i=1

where z;, = by + bix; + boy; (i=1,2,...,n) is the trend value of the ith given point. To make Q value the
least, based on the mathematical analysis principles, we make the partial derivative of Q to by, b; and b, and
let them be equal to zero.

(=]

% = —2§(zi — by — bix; — byy;) =0

=)

0

0b;

_22(21' — bO — b].xi — bzy,-)x,- =0 (26)
i=1

sTQz = =2 (zi — bo — bix; — b2y)yi = 0
=

After rearrangement, the linear equations including by, b, and b, are obtained (written > , to > ):
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b()l’l + bl in + b2 Zyl = ZZ,-
bo > xi+ b1 Y x4+ by > xyi=> zix; (27)
bo > yi+bi Y xyi+ b >y =>zy;

Eq. (27) can also be written as matrix forms:
n DX DN bo Yoz
DX lez X b | =1 Dz (28)
X Xxy LY by PREAY

From these equations, the parameters by, b; and b, can be obtained. Substitute n given data

(xi,31,z;) (i=0,1,...,n) into the one order trend surface equation, n trend values can be found
Zi=by+bixi+ by, (i=12,...,n). (29)
And then we can obtain the deviation values
e=z—z, (i=12,...,n). (30)

Fig. 9 shows the relationship among given values, trend values and deviation values with the regression line.

The deviation value reflects the local variation characteristic. The positive expresses that the values are
higher than the average variation trend and the negative expresses that the values are lower than average
variation trend.

The vertical scaling indicates the factor of the compression or amplification of the graph in the vertical
direction when all the data are mapped into some small area. The data in the area in that the measured
values are smaller should be smaller, vice versa. So, the space variation character of the data can be re-
flected factually by using the deviation value as the estimation of the vertical scaling.

When fractal interpolation is performed in the rectangle area, the data on the regular grids can be ex-

pressed as {x,, Vm,zom} m=0,1,...,N;m=0,1,...,M). Similarly, trend value and deviation value can be
expressed as z,, and e,, respectively.
Let
e=_ max _ {lewnl} (31)
then vertical scaling
Sum = €amfe, (me{l,2,...,N};me{l,2,... ., M}) (32)
Ywu

5 - Given value I—Vﬂ
|Deviation values l—I‘I

3_ .........

7

1 X
0 T T T T T T —>

1 2 3 4 5 6

Fig. 9. The relationship among given values, trend values and deviation values.
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Fig. 10. One order trend surface.

4.3. Case study

In order to make comparisons conveniently, we also use the data in Table 1 as interpolating data. Using
Eq. (24), we can get the one order trend surface (see Fig. 10). Using Egs. (30)—(32), the vertical scaling can
be obtained.

Combining with the partition of the local field discussed in the previous section, the local field is set in
4 x 4 points (see Fig. 8).

The fracture surface interpolated by using the improved self-affine fractal interpolation method is shown
in Fig. 11.

Comparing Fig. 5 with Figs. 4 and 11, we can easily find that Fig. 11 can better express the real mor-
phology of the fracture surface (Fig. 5). It is just because the method of improved self-affine fractal in-
terpolation, the partition of local field and determination of vertical scaling, are used. Fig. 11 has higher
precision than Fig. 4. We can say that the fracture surface generated by using the improved self-affine
fractal interpolation method agrees well with the natural rock fracture surface.
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Fig. 11. Improved self-affine fractal interpolation surface.
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It should be pointed out that sometimes the one order trend surface may include some interpolated
points. That is to say, the observed value is equal to the trend value in some points. In this case the vertical
scaling is zero. We can give the value less than 0.3 artificially. This work can be done easily by adding
condition statements in the programming.

5. The relationship between the number of information points and the precision of the interpolation

The number of information points (the number of interpolating data) directly influences the interpolated
result. In order to discuss the relationship between the amount of information points and the interpolation
precision, the rock fracture surfaces of 12 samples are considered in this section. We select 6 x 6, 11 x 11,
21 x 21 and 41 x 41 data from the rock fracture surfaces to perform fractal interpolation and then compare
the interpolated surfaces with the measured rock fracture surfaces. Finally, the power function of the re-
lationship between the amount of information points and the interpolation precision is obtained.

5.1. Dimension precision

In engineering practice, the fractal dimension is an important parameter for fractal applications. In the
research of roughness of rock fracture surfaces, it is also an essential index. For the interpolation theory of
fractal surfaces, the fractal dimensions can be calculated from known information points and fractal in-
terpolated surfaces. The problem is how to calculate the precision under the condition of certain known
information points.

The information content is defined as the ratio of the amount of given information used in the fractal
interpolation to the amount of total information. In the study of fractal interpolation surface, the infor-
mation content is calculated as the percentage of the ratio of numbers of interpolating points used in fractal
interpolating to the actual number of the data measured on rock fracture surfaces. That is

h= ’7 x 100% (33)

Jn

where i, is the number of data used in fractal interpolation and f, is the actual numbers of the data
measured on rock fracture surfaces.

In engineering practice, the number of data used in fractal interpolation, i,, is known and f, is replaced
by the total number of interpolated data in the fractal interpolation.

The dimension precision indicates the relationship of different information content used in the fractal
interpolation and fractal dimension of the fractal interpolation surface. The dimension precision is then
defined as

|di — di]

szl—T (34)

where d; is the fractal dimension of fractal interpolation surface, d; is the fractal dimension of the actual
rock fracture surface.

Using the principle of the box covering method, the fractal dimension of the fractal interpolation surface
and the actual rock fracture surface are calculated here approximately. For every sectional profile, we use
five different lengths (scales) to perform net divisions. The minimum scale is equal to the minimum distance
of every two data points, and the following scales are equal to twice that of the former. For every net, count
up the number of meshes that intersect the surface. Calculate the logarithms of the scales and the corre-
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sponding mesh numbers, and then use a straight line to fit these double-logarithm data. According to the
slope of the straight line, we can obtain the fractal dimensions of sectional profiles. We take the average of
these fractal dimensions plus one as the fractal dimension of the corresponding surface.

By Eq. (34), the dimension precision depends on the fractal dimension of the actual rock fracture sur-
face, but the fractal dimension of rock fracture surface varies according to the resolution. In this paper we
use the rock fracture surface data provided by Wang (Wang, 1994). Cutting rock bores of radius 4.18 cm
into rock samples of height 5.0 cm, Wang made rock fracture surfaces by Brazilian tests and modified shear
tests. Then the central area of 20 x 20 mm? of every rock fracture surface was scanned by a laser profi-
lometer. The scan step length was 0.25 mm. Thus there are 81 x 81 test points in the area, and we can get
81 x 81 = 6561 data on every rock fracture surface. Therefore, the previous minimum scale used to cal-
culate the fractal dimension is equal to 0.25 mm. On the basis of this calculating method of fractal di-
mension we study the dimension precision in this paper.

In the process of interpolation, we choose the deviations, s,,, of interpolation data as the vertical
scaling, which sets up the relationship between the fractal dimension of interpolated surfaces and the in-
terpolation data.

Table 3 shows the fractal dimensions of the fractal interpolation surfaces generated with different in-
formation content, i.e. different number of information points. The number of information points in the
table represents the product of the points in the direction x and the points in the direction y. The content of
the table is the fractal dimensions of the rock fracture surfaces of 12 samples having the different infor-
mation contents.

From Table 3, it is clear that generally the fractal dimensions of interpolated surfaces are closer to that of
the measured rock fracture surfaces as the number of the interpolation points increases. But the rock
sample 5, the fractal dimension of the interpolated surface with (11 x 11) points is smaller than that with
(6 x 6) points and at the rock sample 9, the fractal dimension of the interpolated surface with (6 x 6) points
is closer to the fractal dimension of the measured rock fracture surface than the others.

Table 4 lists the fractal dimension precision of 12 rock samples with (6 x 6), (11 x 11), (21 x 21) and
(41 x 41) points based on Eq. (34).

Using the power function to fit the average values in Table 3, we can obtain the relationship between
information content and dimension precision (see Fig. 12)

y = 0.9993x"0% (35)

where y is the dimension precision, x is the information content used in the interpolation. The correlation
coefficient of the fitting is 99.23%.

It is clear, from Eq. (35), that given the information content used in the interpolation, the dimension
precision of the fractal interpolation surface can be estimated.

5.2. Deviation precision

The dimension precision shows the interpolation precision in macrocosm, while the deviation precision
indicates the interpolation precision in the local data variation feature.

Letz (i=1,2,...,n) be n data measured on a rock fracture surface and z; (i = 1,2,...,n) be n fractal
interpolated data. Then the average deviation is defined as
1 n
== ;— 2 36
W=D (36)

From Eq. (36), the average deviation is the average value of the absolute error that contains the incor-
poration of the original data. If the average deviation of the first set of data is 1 with the average value of
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Fig. 12. The curve of dimension precision.

measured data 10 and if the average deviation of the second set of data is 1 too with the average value of
measured data 5, then we know clearly that the interpolation precision of these two sets of data is different.
The former is 90% and the latter 80%. The deviation precision is to express the interpolating precision by
using deviation. In order to eliminate the influences of the original data, the deviation precision is obtained
by dividing the average deviation by the average value of the original data. In fact, the greater the deviation
is, the lesser the precision. To make the computing results agree with the definition of precision, the de-
viation precision is defined below:
w

pz:1_1 n
w Dict Zi

The physical meaning of Eq. (37) can be regarded as: if the average deviation w = 0, the deviation precision
p. = 1; if the average deviation is equal to the average value of the original data, the deviation precision
p- = 0. When p, is smaller than zero, that is to say, w > (1/n) >_"_, z;, the average deviation is greater than
the average value of the original data, then we say the estimation precision is zero. Therefore, the lesser the
average deviation w is, the greater p. is. The maximum of p. is 1 and the minimum is 0. So p. can be used as
the precision and Eq. (37) is called deviation precision.

The amount of measured data on the rock fracture surface is 81 x 81. We select (6 x 6), (11 x 11),
(21 x 21) and (41 x 41) data from each of the 12 rock fracture surfaces and interpolate them into 81 x 81
data, respectively. The average deviation of the interpolation is calculated by Eq. (37).

Table 5 gives the deviation of fractal interpolation surface of 12 rock fracture surfaces with information
points (6 x 6), (11 x 11), (21 x 21) and (41 x 41).

From Table 5, it is seen that the average deviations of the 12 rock samples decrease with the increasing of
the information content used in the interpolation. But it only gives us the absolute error and we do not
know the precision. To eliminate the influences of the average data, we calculate the deviation according to
Eq. (37) as shown in Table 6.

We can find the relationship of the information content and the deviation precision by fitting the average
data in Table 6

y = 1.0034x"0172 (38)

(37)

where y is the deviation precision, x is the information content used in the interpolation. The correlation
coefficient of the fitting is 99.26%.
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Fig. 13. The curve of deviation precision.

In engineering practice, if the percentage of the ratio of the number of data used in the interpolation to the
total number of interpolated data is given, deviation precision of the fractal interpolation surface can be
estimated from Eq. (38).

It should be pointed out, similar to the dimension precision, we actually do not know the total infor-
mation amount in practical work. Then we use the total number of interpolated data as the total infor-
mation amount.

For example, if we have 10 given interpolating data points and the total number of the interpolated data
points is 100, the information content x = 10/100 = 0.1 and the deviation precision y = 0.9644. It means
that the roughness of interpolated surface represents 96.44% of the actual fracture surface.

Fig. 13 shows the relationship of the information content and the interpolation deviation precision.
From Fig. 13, we can see that this relationship is nonlinear. When the information content rises from 1/200
to 20/100, the interpolation deviation precision increases quickly. When the information amount rises from
20% to 100%, the interpolation deviation precision increases slowly. That is to say, in this scope the in-
terpolation precision does not increase too much even if we increase many information points.

6. The fractal interpolation surfaces of rock feature surfaces
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